Статическое электричество

  • 0

Статическое электричество

Рубрики :Статьи

Статическое электричество – это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда
на поверхности или в объеме диэлектриков или в объеме
диэлектриков или на изолированных проводниках.
Так звучит определение по ГОСТ 12.1.018-93 «Пожаровзрывобезопасность статического электричества».

Как возникает заряд

В основном статическое электричество генерируется при трении объектов – эффект трибоэлектризации. Трибоэлектричество (от греч. tribos трение) – явление возникновения электрических зарядов при трении и последующем разделении материалов. Примерами образования могут послужить самые элементарные вещи: ходьба является одним из самых больших источников трибоэлектрического заряда. При ходьбе происходит контакт подошвы обуви с напольным покрытием, а затем их последующее разделение. При этом данное действие происходит многократно. Человеческое тело является хорошим проводником, что позволяет ему проводить и накапливать заряды, образующиеся в ходе разделения двух материалов. При хождении по ковровому покрытию на человеке может образовываться потенциал до 15000 В.

Как бороться с электростатикой

Средства защиты от статического электричества по принципу действия делятся на следующие виды:

  • заземляющие устройства,
  • нейтрализаторы,
  • увлажняющие устройства,
  • антиэлектростатические вещества,
  • экранирующие устройства.

Прежде всего оборудование ОПС должно быть качественно заземлено. Цепь утечек на землю работает удовлетворительно, если ее сопротивление не превышает 106 Ом. Заземление эффективно только для материалов, имеющих удельное сопротивление не более 1010 Ом•м. Таким образом, если поверхность приборов пластиковая, заземление может быть не всегда эффективно. В этом случае нужно использовать другие методы борьбы со статикой.

Для разрядки диэлектрических поверхностей применяют ионизаторы воздуха, способные генерировать ионы обеих полярностей. Такие ионизаторы используются для локальной нейтрализации зарядов непосредственно на рабочих местах или же ими дополняют вентиляционные системы, чтобы поток отфильтрованного воздуха ионизировался и происходила нейтрализация зарядов на стенах потолках, поверхностях оборудования и др.

Электризация диэлектрических материалов резко снижается при увеличении влажности воздуха, однако при этом ухудшаются условия работы оборудования. Поэтому, как правило, влажность не должна превышать 40%. Кроме того, для исключения электризации при ходьбе, а также для организации дополнительного пути «стекания» электростатических зарядов помещение, где находится приемно-контрольное оборудование, следует оснастить напольным антистатическим покрытием. Самое простое – настелить специальный электропроводящий линолеум, имеющий по отношению к земле сопротивление порядка 107 Ом, при котором заряды на нем уменьшаются до безопасных значений в течение 0,02 с.

Крайне желательно защитить и само рабочее место оператора, если таковое имеется. Столы должны иметь проводящее покрытие из пропитанного углем пластика, проводящего дивинила или антистатического материала. Эти покрытия обычно заземляются с помощью шин, прокладываемых на столах под покрытием. Аналогичные покрытия могут иметь и стулья. При соблюдении всех вышеперечисленных условий мы получаем гарантированную защиту оборудования ОПС от поражения электростатическим разрядом. А потери от одного такого удара могут многократно превысить все затраты на профилактические меры.

В принципе имеются три способа защиты полупроводниковых изделий от повреждения и помех при воздействии разрядов: вообще предупредить возникновение электростатического заряда, не допустить попадания заряда на устройства и увеличить стойкость аппаратуры и ее комплектующих к воздействию разряда.

Первые два способа отнесем к коллективным мерам защиты от воздействия разряда.

Методы защиты от статического электричества, применяемые в радиоэлектронной промышленности, подразделяются на химические, физико-механические и конструктивно-технологические. Первые и вторые стараются предотвратить возникновение статических зарядов и ускорить их стекание, третьи — только защищают приборы от опасных воздействий заряда, но не оказывают влияния на утечку зарядов. Способствовать утечке могут коронный разряд, объемная и поверхностная проводимость материала, на котором скапливается заряд. Следовательно, наиболее общее решение проблемы — ионизация воздуха плюс увеличение поверхностной и объемной проводимости материалов. Практические методы обычно состоят в создании организованных путей утечки зарядов, чтобы не допустить попадания опасных потенциалов на приборы.

Прежде всего, это метод заземления. Цепь утечек на землю работает удовлетворительно, если ее сопротивление не превышает 106 Ом. Заземление эффективно только для материалов, имеющих удельное сопротивление не более 1010 Ом·м. Изолятор с удельным сопротивлением свыше 1014 Ом·м способен хранить высокий заряд, что может привести к разряду при его связи с землей. Такой изолятор следует защищать другими способами. Необходимо очень тщательно продумывать эффективность электростатической защиты всех деталей оснащения рабочего места оператора.

Следующий метод заключается в подавлении статического электричества, так как заземление не позволяет эффективно снимать заряды с поверхности диэлектриков, которые широко применяются в так называемых чистых комнатах. Электризация подобных материалов резко снижается при увеличении влажности воздуха, однако при этом ухудшаются условия работы. Поэтому влажность устанавливается равной 40%. Для разрядки диэлектрических поверхностей применяют ионизаторы воздуха, способные генерировать ионы обеих полярностей. Такие ионизаторы используются для локальной нейтрализации зарядов непосредственно на рабочих местах или же ими дополняют вентиляционные системы чистых комнат, чтобы поток отфильтрованного воздуха ионизировался и происходила нейтрализация зарядов на стенах, потолках, поверхностях оборудования и др.

Еще один путь уменьшить электростатическую опасность — применять в помещении токопроводящие материалы, содержащие металлические или углеродные частицы. Стены, потолок и пол чистых комнат предложено облицовывать электропроводящими покрытиями, имеющими по отношению к земле электросопротивление порядка 107 Ом, при котором заряды на них уменьшаются до безопасных значений в течение 0.02 с. В помещениях, где расположена аппаратура с чувствительными к заряду компонентами, полы должны быть покрыты проводящими коврами, предназначенными прежде всего для рассеивания зарядов с входящих туда лиц. Ковры также создают “заземленный” фон во всем помещении. Они изготавливаются из пластмасс, насыщенных углем, или из проводящего винилового материала и подсоединяются к заземлению. Столы, рабочие места также должны иметь проводящее покрытие из пропитанного углем пластика, проводящего дивинила или антистатического материала. Эти покрытия обычно заземляются с помощью шин, прокладываемых на столах под покрытием. Аналогичные покрытия должны иметь и стулья.

Транспортировку полупроводниковых приборов и печатных плат следует проводить в электропроводящей таре. При этом контейнеры для транспортировки защищают изделия от трех видов электрических воздействий: от трибоэлектричества; от наводок, вызываемых искровыми разрядами; от электрических полей; при этом сам материал контейнеров не должен накапливать заряды. Для упаковки печатных плат и чувствительных к заряду устройств следует применять проводящий пенопласт.

Наконец, нужно стремиться уменьшить заряд тела человека. Для этого используются заземление и антистатическая одежда. Одно из наиболее эффективных средств рассеяния накапливающегося заряда — проводящие браслеты. Они создают электропроводный путь, по которому заряд может стекать на землю. Браслет состоит из проводящей полосы, укрепляемой на запястье, и пряжки, которой браслет соединяется с заземленным проводом. Для создания безопасных условий работы провод должен иметь последовательно соединенное сопротивление величиной от 1 до 100 МОм, чтобы протекающий через человеческий организм ток не превышал 1 мА. На человека токи статического электричества воздействуют так: токи силой 0-1 мА создают незначительные ощущения; 1-10 мА причиняют боль; 10 мА вызывают шок; 100 мА могут привести к летальному исходу.

Нельзя пренебрегать и таким методом защиты, как шунтирование выводов изделий, выводных клемм печатных плат на тех операциях, где это принципиально возможно. Монтаж следует производить заземленным инструментом, пайку — паяльниками с заземленными паяльными головками.

* * *


Оставить ответ